3.31 \(\int \frac{(c-c \sec (e+f x))^5}{(a+a \sec (e+f x))^3} \, dx\)

Optimal. Leaf size=162 \[ -\frac{c^5 \tan (e+f x)}{a^3 f}+\frac{128 c^5 \cot ^5(e+f x)}{5 a^3 f}+\frac{128 c^5 \cot ^3(e+f x)}{3 a^3 f}+\frac{32 c^5 \cot (e+f x)}{a^3 f}-\frac{128 c^5 \csc ^5(e+f x)}{5 a^3 f}+\frac{64 c^5 \csc ^3(e+f x)}{3 a^3 f}-\frac{16 c^5 \csc (e+f x)}{a^3 f}+\frac{8 c^5 \tanh ^{-1}(\sin (e+f x))}{a^3 f}+\frac{c^5 x}{a^3} \]

[Out]

(c^5*x)/a^3 + (8*c^5*ArcTanh[Sin[e + f*x]])/(a^3*f) + (32*c^5*Cot[e + f*x])/(a^3*f) + (128*c^5*Cot[e + f*x]^3)
/(3*a^3*f) + (128*c^5*Cot[e + f*x]^5)/(5*a^3*f) - (16*c^5*Csc[e + f*x])/(a^3*f) + (64*c^5*Csc[e + f*x]^3)/(3*a
^3*f) - (128*c^5*Csc[e + f*x]^5)/(5*a^3*f) - (c^5*Tan[e + f*x])/(a^3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.443483, antiderivative size = 162, normalized size of antiderivative = 1., number of steps used = 29, number of rules used = 15, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.577, Rules used = {3904, 3886, 3473, 8, 2606, 194, 2607, 30, 14, 3767, 2621, 302, 207, 2620, 270} \[ -\frac{c^5 \tan (e+f x)}{a^3 f}+\frac{128 c^5 \cot ^5(e+f x)}{5 a^3 f}+\frac{128 c^5 \cot ^3(e+f x)}{3 a^3 f}+\frac{32 c^5 \cot (e+f x)}{a^3 f}-\frac{128 c^5 \csc ^5(e+f x)}{5 a^3 f}+\frac{64 c^5 \csc ^3(e+f x)}{3 a^3 f}-\frac{16 c^5 \csc (e+f x)}{a^3 f}+\frac{8 c^5 \tanh ^{-1}(\sin (e+f x))}{a^3 f}+\frac{c^5 x}{a^3} \]

Antiderivative was successfully verified.

[In]

Int[(c - c*Sec[e + f*x])^5/(a + a*Sec[e + f*x])^3,x]

[Out]

(c^5*x)/a^3 + (8*c^5*ArcTanh[Sin[e + f*x]])/(a^3*f) + (32*c^5*Cot[e + f*x])/(a^3*f) + (128*c^5*Cot[e + f*x]^3)
/(3*a^3*f) + (128*c^5*Cot[e + f*x]^5)/(5*a^3*f) - (16*c^5*Csc[e + f*x])/(a^3*f) + (64*c^5*Csc[e + f*x]^3)/(3*a
^3*f) - (128*c^5*Csc[e + f*x]^5)/(5*a^3*f) - (c^5*Tan[e + f*x])/(a^3*f)

Rule 3904

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(-(a*c))^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rule 3886

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 194

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 2621

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(f*a^n)^(-1), Subst
[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Integer
Q[(n + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2620

Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(1 + x^2)^((
m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \frac{(c-c \sec (e+f x))^5}{(a+a \sec (e+f x))^3} \, dx &=-\frac{\int \cot ^6(e+f x) (c-c \sec (e+f x))^8 \, dx}{a^3 c^3}\\ &=-\frac{\int \left (c^8 \cot ^6(e+f x)-8 c^8 \cot ^5(e+f x) \csc (e+f x)+28 c^8 \cot ^4(e+f x) \csc ^2(e+f x)-56 c^8 \cot ^3(e+f x) \csc ^3(e+f x)+70 c^8 \cot ^2(e+f x) \csc ^4(e+f x)-56 c^8 \cot (e+f x) \csc ^5(e+f x)+28 c^8 \csc ^6(e+f x)-8 c^8 \csc ^6(e+f x) \sec (e+f x)+c^8 \csc ^6(e+f x) \sec ^2(e+f x)\right ) \, dx}{a^3 c^3}\\ &=-\frac{c^5 \int \cot ^6(e+f x) \, dx}{a^3}-\frac{c^5 \int \csc ^6(e+f x) \sec ^2(e+f x) \, dx}{a^3}+\frac{\left (8 c^5\right ) \int \cot ^5(e+f x) \csc (e+f x) \, dx}{a^3}+\frac{\left (8 c^5\right ) \int \csc ^6(e+f x) \sec (e+f x) \, dx}{a^3}-\frac{\left (28 c^5\right ) \int \cot ^4(e+f x) \csc ^2(e+f x) \, dx}{a^3}-\frac{\left (28 c^5\right ) \int \csc ^6(e+f x) \, dx}{a^3}+\frac{\left (56 c^5\right ) \int \cot ^3(e+f x) \csc ^3(e+f x) \, dx}{a^3}+\frac{\left (56 c^5\right ) \int \cot (e+f x) \csc ^5(e+f x) \, dx}{a^3}-\frac{\left (70 c^5\right ) \int \cot ^2(e+f x) \csc ^4(e+f x) \, dx}{a^3}\\ &=\frac{c^5 \cot ^5(e+f x)}{5 a^3 f}+\frac{c^5 \int \cot ^4(e+f x) \, dx}{a^3}-\frac{c^5 \operatorname{Subst}\left (\int \frac{\left (1+x^2\right )^3}{x^6} \, dx,x,\tan (e+f x)\right )}{a^3 f}-\frac{\left (8 c^5\right ) \operatorname{Subst}\left (\int \frac{x^6}{-1+x^2} \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (8 c^5\right ) \operatorname{Subst}\left (\int \left (-1+x^2\right )^2 \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (28 c^5\right ) \operatorname{Subst}\left (\int x^4 \, dx,x,-\cot (e+f x)\right )}{a^3 f}+\frac{\left (28 c^5\right ) \operatorname{Subst}\left (\int \left (1+2 x^2+x^4\right ) \, dx,x,\cot (e+f x)\right )}{a^3 f}-\frac{\left (56 c^5\right ) \operatorname{Subst}\left (\int x^4 \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (56 c^5\right ) \operatorname{Subst}\left (\int x^2 \left (-1+x^2\right ) \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (70 c^5\right ) \operatorname{Subst}\left (\int x^2 \left (1+x^2\right ) \, dx,x,-\cot (e+f x)\right )}{a^3 f}\\ &=\frac{28 c^5 \cot (e+f x)}{a^3 f}+\frac{55 c^5 \cot ^3(e+f x)}{3 a^3 f}+\frac{57 c^5 \cot ^5(e+f x)}{5 a^3 f}-\frac{56 c^5 \csc ^5(e+f x)}{5 a^3 f}-\frac{c^5 \int \cot ^2(e+f x) \, dx}{a^3}-\frac{c^5 \operatorname{Subst}\left (\int \left (1+\frac{1}{x^6}+\frac{3}{x^4}+\frac{3}{x^2}\right ) \, dx,x,\tan (e+f x)\right )}{a^3 f}-\frac{\left (8 c^5\right ) \operatorname{Subst}\left (\int \left (1-2 x^2+x^4\right ) \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (8 c^5\right ) \operatorname{Subst}\left (\int \left (1+x^2+x^4+\frac{1}{-1+x^2}\right ) \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (56 c^5\right ) \operatorname{Subst}\left (\int \left (-x^2+x^4\right ) \, dx,x,\csc (e+f x)\right )}{a^3 f}-\frac{\left (70 c^5\right ) \operatorname{Subst}\left (\int \left (x^2+x^4\right ) \, dx,x,-\cot (e+f x)\right )}{a^3 f}\\ &=\frac{32 c^5 \cot (e+f x)}{a^3 f}+\frac{128 c^5 \cot ^3(e+f x)}{3 a^3 f}+\frac{128 c^5 \cot ^5(e+f x)}{5 a^3 f}-\frac{16 c^5 \csc (e+f x)}{a^3 f}+\frac{64 c^5 \csc ^3(e+f x)}{3 a^3 f}-\frac{128 c^5 \csc ^5(e+f x)}{5 a^3 f}-\frac{c^5 \tan (e+f x)}{a^3 f}+\frac{c^5 \int 1 \, dx}{a^3}-\frac{\left (8 c^5\right ) \operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,\csc (e+f x)\right )}{a^3 f}\\ &=\frac{c^5 x}{a^3}+\frac{8 c^5 \tanh ^{-1}(\sin (e+f x))}{a^3 f}+\frac{32 c^5 \cot (e+f x)}{a^3 f}+\frac{128 c^5 \cot ^3(e+f x)}{3 a^3 f}+\frac{128 c^5 \cot ^5(e+f x)}{5 a^3 f}-\frac{16 c^5 \csc (e+f x)}{a^3 f}+\frac{64 c^5 \csc ^3(e+f x)}{3 a^3 f}-\frac{128 c^5 \csc ^5(e+f x)}{5 a^3 f}-\frac{c^5 \tan (e+f x)}{a^3 f}\\ \end{align*}

Mathematica [B]  time = 5.6226, size = 557, normalized size = 3.44 \[ -\frac{c^5 \sec \left (\frac{e}{2}\right ) (\cos (e+f x)-1)^5 \cot \left (\frac{1}{2} (e+f x)\right ) \csc ^4\left (\frac{1}{2} (e+f x)\right ) \left (1016 \sin \left (\frac{f x}{2}\right ) \cot ^6\left (\frac{1}{2} (e+f x)\right ) \csc \left (\frac{1}{2} (e+f x)\right )+\sec ^2\left (\frac{e}{2}\right ) \sin \left (\frac{f x}{2}\right ) (-210 \cos (e+f x)-84 \cos (2 (e+f x))-14 \cos (3 (e+f x))+131 \cos (2 e+f x)+66 \cos (e+2 f x)+66 \cos (3 e+2 f x)+21 \cos (2 e+3 f x)+21 \cos (4 e+3 f x)+76 \cos (e)+131 \cos (f x)-140) \csc ^7\left (\frac{1}{2} (e+f x)\right )+48 \left (\sin \left (\frac{e}{2}\right )-\sin \left (\frac{3 e}{2}\right )\right ) \sec ^2\left (\frac{e}{2}\right ) \cot \left (\frac{1}{2} (e+f x)\right ) \csc ^4\left (\frac{1}{2} (e+f x)\right )-60 \cos (e) \sec \left (\frac{e}{2}\right ) \cot ^7\left (\frac{1}{2} (e+f x)\right ) \left (-8 \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+8 \log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+f x\right )+8 \left (\sin \left (\frac{e}{2}\right )-\sin \left (\frac{3 e}{2}\right )\right ) \sec ^2\left (\frac{e}{2}\right ) (\cos (e+f x)-7) \cot ^3\left (\frac{1}{2} (e+f x)\right ) \csc ^4\left (\frac{1}{2} (e+f x)\right )+2 \sec \left (\frac{e}{2}\right ) \cot ^5\left (\frac{1}{2} (e+f x)\right ) \left (30 \cos (e) \left (-8 \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+8 \log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+f x\right )-\tan \left (\frac{e}{2}\right ) (15 (\cos (e+f x)+\cos (f x)-1)+\cos (e)) \csc ^2\left (\frac{1}{2} (e+f x)\right )\right )\right )}{240 a^3 f \left (\tan \left (\frac{e}{2}\right )-1\right ) \left (\tan \left (\frac{e}{2}\right )+1\right ) (\cos (e+f x)+1)^3 \left (\cot \left (\frac{1}{2} (e+f x)\right )-1\right ) \left (\cot \left (\frac{1}{2} (e+f x)\right )+1\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sec[e + f*x])^5/(a + a*Sec[e + f*x])^3,x]

[Out]

-(c^5*(-1 + Cos[e + f*x])^5*Cot[(e + f*x)/2]*Csc[(e + f*x)/2]^4*Sec[e/2]*(-60*Cos[e]*Cot[(e + f*x)/2]^7*(f*x -
 8*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + 8*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]])*Sec[e/2] + 48*Cot[(e
 + f*x)/2]*Csc[(e + f*x)/2]^4*Sec[e/2]^2*(Sin[e/2] - Sin[(3*e)/2]) + 8*(-7 + Cos[e + f*x])*Cot[(e + f*x)/2]^3*
Csc[(e + f*x)/2]^4*Sec[e/2]^2*(Sin[e/2] - Sin[(3*e)/2]) + 1016*Cot[(e + f*x)/2]^6*Csc[(e + f*x)/2]*Sin[(f*x)/2
] + (-140 + 76*Cos[e] + 131*Cos[f*x] - 210*Cos[e + f*x] - 84*Cos[2*(e + f*x)] - 14*Cos[3*(e + f*x)] + 131*Cos[
2*e + f*x] + 66*Cos[e + 2*f*x] + 66*Cos[3*e + 2*f*x] + 21*Cos[2*e + 3*f*x] + 21*Cos[4*e + 3*f*x])*Csc[(e + f*x
)/2]^7*Sec[e/2]^2*Sin[(f*x)/2] + 2*Cot[(e + f*x)/2]^5*Sec[e/2]*(30*Cos[e]*(f*x - 8*Log[Cos[(e + f*x)/2] - Sin[
(e + f*x)/2]] + 8*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) - (Cos[e] + 15*(-1 + Cos[f*x] + Cos[e + f*x]))*Csc
[(e + f*x)/2]^2*Tan[e/2])))/(240*a^3*f*(1 + Cos[e + f*x])^3*(-1 + Cot[(e + f*x)/2])*(1 + Cot[(e + f*x)/2])*(-1
 + Tan[e/2])*(1 + Tan[e/2]))

________________________________________________________________________________________

Maple [A]  time = 0.099, size = 179, normalized size = 1.1 \begin{align*} -{\frac{8\,{c}^{5}}{5\,f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{5}}-{\frac{8\,{c}^{5}}{3\,f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{3}}-16\,{\frac{{c}^{5}\tan \left ( 1/2\,fx+e/2 \right ) }{f{a}^{3}}}+2\,{\frac{{c}^{5}\arctan \left ( \tan \left ( 1/2\,fx+e/2 \right ) \right ) }{f{a}^{3}}}+8\,{\frac{{c}^{5}\ln \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) }{f{a}^{3}}}+{\frac{{c}^{5}}{f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-1}}+{\frac{{c}^{5}}{f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) -1 \right ) ^{-1}}-8\,{\frac{{c}^{5}\ln \left ( \tan \left ( 1/2\,fx+e/2 \right ) -1 \right ) }{f{a}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^5/(a+a*sec(f*x+e))^3,x)

[Out]

-8/5/f*c^5/a^3*tan(1/2*f*x+1/2*e)^5-8/3/f*c^5/a^3*tan(1/2*f*x+1/2*e)^3-16/f*c^5/a^3*tan(1/2*f*x+1/2*e)+2/f*c^5
/a^3*arctan(tan(1/2*f*x+1/2*e))+8/f*c^5/a^3*ln(tan(1/2*f*x+1/2*e)+1)+1/f*c^5/a^3/(tan(1/2*f*x+1/2*e)+1)+1/f*c^
5/a^3/(tan(1/2*f*x+1/2*e)-1)-8/f*c^5/a^3*ln(tan(1/2*f*x+1/2*e)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.58554, size = 759, normalized size = 4.69 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^5/(a+a*sec(f*x+e))^3,x, algorithm="maxima")

[Out]

-1/60*(3*c^5*(40*sin(f*x + e)/((a^3 - a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2)*(cos(f*x + e) + 1)) + (85*sin(f
*x + e)/(cos(f*x + e) + 1) + 10*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3
 - 60*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/a^3 + 60*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/a^3) + 5*c^5*
((105*sin(f*x + e)/(cos(f*x + e) + 1) + 20*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*sin(f*x + e)^5/(cos(f*x + e
) + 1)^5)/a^3 - 60*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/a^3 + 60*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/
a^3) + c^5*((105*sin(f*x + e)/(cos(f*x + e) + 1) - 20*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*sin(f*x + e)^5/(
cos(f*x + e) + 1)^5)/a^3 - 120*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a^3) + 10*c^5*(15*sin(f*x + e)/(cos(f*x
 + e) + 1) + 10*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3 + 5*c^5*(15*s
in(f*x + e)/(cos(f*x + e) + 1) - 10*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*sin(f*x + e)^5/(cos(f*x + e) + 1)^
5)/a^3 - 30*c^5*(5*sin(f*x + e)/(cos(f*x + e) + 1) - sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3)/f

________________________________________________________________________________________

Fricas [A]  time = 1.18968, size = 721, normalized size = 4.45 \begin{align*} \frac{15 \, c^{5} f x \cos \left (f x + e\right )^{4} + 45 \, c^{5} f x \cos \left (f x + e\right )^{3} + 45 \, c^{5} f x \cos \left (f x + e\right )^{2} + 15 \, c^{5} f x \cos \left (f x + e\right ) + 60 \,{\left (c^{5} \cos \left (f x + e\right )^{4} + 3 \, c^{5} \cos \left (f x + e\right )^{3} + 3 \, c^{5} \cos \left (f x + e\right )^{2} + c^{5} \cos \left (f x + e\right )\right )} \log \left (\sin \left (f x + e\right ) + 1\right ) - 60 \,{\left (c^{5} \cos \left (f x + e\right )^{4} + 3 \, c^{5} \cos \left (f x + e\right )^{3} + 3 \, c^{5} \cos \left (f x + e\right )^{2} + c^{5} \cos \left (f x + e\right )\right )} \log \left (-\sin \left (f x + e\right ) + 1\right ) -{\left (239 \, c^{5} \cos \left (f x + e\right )^{3} + 477 \, c^{5} \cos \left (f x + e\right )^{2} + 349 \, c^{5} \cos \left (f x + e\right ) + 15 \, c^{5}\right )} \sin \left (f x + e\right )}{15 \,{\left (a^{3} f \cos \left (f x + e\right )^{4} + 3 \, a^{3} f \cos \left (f x + e\right )^{3} + 3 \, a^{3} f \cos \left (f x + e\right )^{2} + a^{3} f \cos \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^5/(a+a*sec(f*x+e))^3,x, algorithm="fricas")

[Out]

1/15*(15*c^5*f*x*cos(f*x + e)^4 + 45*c^5*f*x*cos(f*x + e)^3 + 45*c^5*f*x*cos(f*x + e)^2 + 15*c^5*f*x*cos(f*x +
 e) + 60*(c^5*cos(f*x + e)^4 + 3*c^5*cos(f*x + e)^3 + 3*c^5*cos(f*x + e)^2 + c^5*cos(f*x + e))*log(sin(f*x + e
) + 1) - 60*(c^5*cos(f*x + e)^4 + 3*c^5*cos(f*x + e)^3 + 3*c^5*cos(f*x + e)^2 + c^5*cos(f*x + e))*log(-sin(f*x
 + e) + 1) - (239*c^5*cos(f*x + e)^3 + 477*c^5*cos(f*x + e)^2 + 349*c^5*cos(f*x + e) + 15*c^5)*sin(f*x + e))/(
a^3*f*cos(f*x + e)^4 + 3*a^3*f*cos(f*x + e)^3 + 3*a^3*f*cos(f*x + e)^2 + a^3*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{c^{5} \left (\int \frac{5 \sec{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec{\left (e + f x \right )} + 1}\, dx + \int - \frac{10 \sec ^{2}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{10 \sec ^{3}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec{\left (e + f x \right )} + 1}\, dx + \int - \frac{5 \sec ^{4}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{\sec ^{5}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec{\left (e + f x \right )} + 1}\, dx + \int - \frac{1}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec{\left (e + f x \right )} + 1}\, dx\right )}{a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**5/(a+a*sec(f*x+e))**3,x)

[Out]

-c**5*(Integral(5*sec(e + f*x)/(sec(e + f*x)**3 + 3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x) + Integral(-10*s
ec(e + f*x)**2/(sec(e + f*x)**3 + 3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x) + Integral(10*sec(e + f*x)**3/(s
ec(e + f*x)**3 + 3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x) + Integral(-5*sec(e + f*x)**4/(sec(e + f*x)**3 +
3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x) + Integral(sec(e + f*x)**5/(sec(e + f*x)**3 + 3*sec(e + f*x)**2 +
3*sec(e + f*x) + 1), x) + Integral(-1/(sec(e + f*x)**3 + 3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x))/a**3

________________________________________________________________________________________

Giac [A]  time = 1.54874, size = 219, normalized size = 1.35 \begin{align*} \frac{\frac{15 \,{\left (f x + e\right )} c^{5}}{a^{3}} + \frac{120 \, c^{5} \log \left ({\left | \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 1 \right |}\right )}{a^{3}} - \frac{120 \, c^{5} \log \left ({\left | \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) - 1 \right |}\right )}{a^{3}} + \frac{30 \, c^{5} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )}{{\left (\tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - 1\right )} a^{3}} - \frac{8 \,{\left (3 \, a^{12} c^{5} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{5} + 5 \, a^{12} c^{5} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} + 30 \, a^{12} c^{5} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )\right )}}{a^{15}}}{15 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^5/(a+a*sec(f*x+e))^3,x, algorithm="giac")

[Out]

1/15*(15*(f*x + e)*c^5/a^3 + 120*c^5*log(abs(tan(1/2*f*x + 1/2*e) + 1))/a^3 - 120*c^5*log(abs(tan(1/2*f*x + 1/
2*e) - 1))/a^3 + 30*c^5*tan(1/2*f*x + 1/2*e)/((tan(1/2*f*x + 1/2*e)^2 - 1)*a^3) - 8*(3*a^12*c^5*tan(1/2*f*x +
1/2*e)^5 + 5*a^12*c^5*tan(1/2*f*x + 1/2*e)^3 + 30*a^12*c^5*tan(1/2*f*x + 1/2*e))/a^15)/f